Canales Iónios 2

Daniel Herrera

Laboratorio de Neurociencias, Facultad de Ciencias

Temas de la clase

- Corrientes de K⁺
- Corrientes de *Ca*⁺
- Estructura y evolución de canales iónicos
- Extras

Temas de la clase

- Corrientes de K^+
- Corrientes de *Ca*⁺
- Estructura y evolución de canales iónicos
- Extras

Canales de K^+ activados por Ca^{2+} ($I_{K(Ca)}$):

- Los canales K(Ca) son canales de K⁺ activados por los aumentos de Ca²⁺ citoplasmático
- Están presentes en una gran cantidad de células

muestran dinámica lenta del $[Ca^{2+}]$

Imágenes de calcium imaging

- En los PA entra Ca²⁺ a la célula (por canales de Ca²⁺, o inespecificidad de otros canales)
- [*Ca*²⁺] tarda en bajar, puede acumularse
- Ejemplo: Técnica de calcium imaging para ver actividad neuronal con indicadores de calcio fluorescentes

4 / 33

Función de $I_{K(Ca)}$:

- *I_{K(Ca)}* está activa mientras haya [*Ca*²⁺]
- Pueden generar una hiperpolarización prolongada luego de un PA (la hiperpolarización clásica de los I_{K(DR)} dura aprox 2 ms, la prolongada de I_{K(Ca)} aprox 50-1000 ms)

Hiperpolarización persistente por $I_{K(Ca)}$ desaparece bajando $[Ca^{2+}]$

(A) $2 \text{ mM } \text{Ca}^{2+}$ (B) $0.2 \text{ mM } \text{Ca}^{2+}$

Hiperpolarización lenta crece cuanto más PA se disparen

(C) SPIKE TRAINS

 Múltiples PA generan acumulación de Ca²⁺ y mayor hiperpolarización

Ajuste de frecuencia y silenciamiento ante l inyectada

(D) SPIKE FREQUENCY ADAPTATION

- *I_{K(Ca)}* puede generar adaptación de la frecuencia de disparo, lo que puede ser deseable para la codificación
- Con suficiente acumulado de Ca²⁺, I_{K(Ca)} puede silenciar a la célula

Supresión del efecto inhibiendo $I_{K(Ca)}$ con Cd^{2+}

(E) BLOCK BY 5 mM Cd²⁺

Escala temporal de la supresión

Aunque tanto I_{KA} como $I_{K(Ca)}$ hiperpolarizan luego de un PA, y ajustan la frecuencia de la célula, $I_{K(Ca)}$ responde al Ca^{2+} , y este puede irse acumulando, dándole una cierta forma una 'memoria' a esta corriente y puede hiperpolarizar más tiempo. I_{KA} con su dinámica rápida en cambio responde a lo que pasa en el momento con el V_m

Temas de la clase

- Corrientes de K⁺
- Corrientes de *Ca*⁺
- Estructura y evolución de canales iónicos
- Extras

Función canales de Ca²⁺:

- Los canales de Ca²⁺ voltaje dependientes son muy importantes en diversos procesos
- Pueden modificar V_m, y también activar diversos procesos bioquímicos en la célula

イロト 不得下 イヨト イヨト 一日

Canales de Ca²⁺ voltaje dependientes

Función canales de Ca²⁺:

- Los efectos finales de la excitación celular suelen ser mediados por Ca²⁺ (ej. contracción muscular, liberación de neurotransmisor)
- También regulan otros canales iónicos (ej. I_{K(Ca)}), y desencadenan modificaciones a largo plazo (ej. plasticidad neuronal)
- Estos efectos son mediados por proteínas especializadas sensibles al Ca²⁺

Canales de Ca^{2+} : Tipos de canales de Ca^{2+} dependientes de voltaje

- Canales Ca^{2+} HVA vs LVA:
- Hay varias corrientes de Ca²⁺ dependientes de voltaje
- Distinción importante:
 - Corrientes LVA (por low-voltage) se activan a potenciales poco despolarizados. Se inactivan rapidamente
 - Corrientes HVA (por high-voltage) se activan a potenciales muy despolarizados. Algunas se inactivan, otras no

Corrientes de calcio en función del potencial de membrana

Canales de Ca^{2+} : Tipos de canales de Ca^{2+} dependientes de voltaje

Ejemplo de caracterización de los canales LVA/HVA. Variamos tanto el voltaje inicial (-30 y -80 mV) como el final (-20 y +10 mV). ¿Qué corriente se ve en cada condición?

Canales de Ca^{2+} : Tipos de canales de Ca^{2+} dependientes de voltaje

Además, algunos canales HVA son inactivados por Ca^{2+} , se autoregulan (A) EGTA INJECTION

Experimento: La corriente a través de canales de calcio aumenta en presencia de secuestrador de *Ca*²⁺ (EGTA), que reduce inactivación

Canales de Ca²⁺: Liberación de neurotransmisor

Función: Liberación de NT

- El Ca²⁺ es mediador de varios procesos de secreción (ej. neurotransmisores, hormonas, enzimas digestivas)
- Cuando el PA llega a la sinápsis, se abren canales de Ca²⁺, que producen liberación de vesículas

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Canales de Ca²⁺: Liberación de neurotransmisor

Función: Liberación de NT

- El Ca²⁺ es mediador de varios procesos de secreción (ej. neurotransmisores, hormonas, enzimas digestivas)
- Cuando el PA llega a la sinápsis, se abren canales de Ca²⁺, que producen liberación de vesículas

Medición de Ca^{2+} adentro de la terminal presináptica en neurona estimulada

Diferentes canales y secreción:

- Diferentes procesos de exositosis usan diferentes Ca_V que se ajusten a sus características
- Liberación de neurotransmisor es rápida y temporalmente precisa, suelen usar canales con alta corriente e inactivación (HVA)
- Algunos procesos de liberación continua usan canales que no se inactivan (ej. liberación de neurotransmisor en fotorreceptores)
- Algunos procesos que se dan sin una despolarización fuerte de la célula usan canales con apertura a bajos potenciales (LVA)

Ca²⁺ en post-sinápsis:

- El *Ca*²⁺ también es importante en la post-sinápsis
- El receptor de NMDA es un canal que se abre por ligando y despolarización. Deja entrar Ca²⁺ en la terminal postsináptica
- El Ca²⁺ desencadena procesos bioquímicos que fortalecen la sinápsis (movimiento de canales, expresión génica)

Canales de *Ca*²⁺: Postsinápsis

Ca^{2+} en post-sinápsis:

- El Ca²⁺ también es importante en la post-sinápsis
- El receptor de NMDA es un canal que se abre por ligando y despolarización. Deja entrar Ca^{2+} en la terminal postsináptica
- El Ca^{2+} desencadena procesos bioquímicos que fortalecen la sinápsis (movimiento de canales, expresión génica)

Expresión génica inducida por Ca^{2+}

Canales de *Ca*²⁺: Músculo

- Ca²⁺ en músculo esquelético:
- La contracción muscular depende de la entrada de *Ca*²⁺ a la célula muscular
- La misma tiene canales de calcio dependientes de voltaje que se abren cuando una neurona excita a la célula

Ca_V y excitabilidad celular:

- Los canales de *Ca*²⁺ también actúan en la excitabilidad celular
- Pueden participar de forma directa: ej. los canales LVA, con su bajo umbral pueden amplificar una despolarización
- Principalmente regulan a otros canales (ej. canales I_{K(Ca)})

Ejemplo de célula cuya actividad aumenta al bloquear los canales de Ca^{2+} con Ni^{2+}

Canales de Ca²⁺: Excitabilidad celular

Ca_V y excitabilidad celular:

- Los canales de Ca²⁺ también actúan en la excitabilidad celular
- Pueden participar de forma directa: ej. los canales LVA, con su bajo umbral pueden amplificar una despolarización
- Principalmente regulan a otros canales (ej. canales I_{K(Ca)})

Ejemplo de célula que luego de mucha estimulación queda con actividad persistente por ciclo de retroalimentación con Ca^{2+}

Temas de la clase

- Corrientes de K⁺
- Corrientes de *Ca*⁺
- Estructura y evolución de canales iónicos
- Extras

Estructura de los canales:

- Los canales iónicos tienen cadenas aminoacídicas hidrofóbicas (con forma α-hélice) que atraviesan la membrana
- Estas cadenas se agregan en dominios o subunidades proteicas
- A su vez estas subunidades proteicas se agregan para formar el canal
- Los parentezcos evolutivos entre canales se ven reflejados en su arquitectura

Dominio transmembrana del receptor de ACh, compuesto de 4 cadenas hidrofóbicas

Estructura de los canales dependientes de voltaje

Estructura de canales Na_V y Ca_V :

- Los canales Nav y de Cav tienen una estructura similar
- Una proteína, con 4 subunidades homólogas (similares entre sí), cada una con 6 segmentos transmembrana
- 2 segmentos de las subunidades, S5 y S6 forman el poro y la selectividad. Las otras (S1-S4) confieren la dependencia de voltaje

Canal Na_V con 4 dominios de 6 cadenas cada uno

Estructura de los canales dependientes de voltaje

Estructura de canales Na_V y Ca_V :

- Los canales Na_V y de Ca_V tienen una estructura similar
- Una proteína, con 4 subunidades homólogas (similares entre sí), cada una con 6 segmentos transmembrana
- 2 segmentos de las subunidades, S5 y S6 forman el poro y la selectividad. Las otras (S1-S4) confieren la dependencia de voltaje

Función de las diferentes cadenas del *Na_V*

Estructura de K_V :

- Los prinipales canales K_V son análogos a los de Na_V, con 4 subunidades que no forman parte de la misma proteína
- Las subunidades de K_V son análogas a los dominios de Na_V
- Hay otras arquitecturas de K_V también

Analogía entre canales de Na_V y K_V

Relaciones evolutivas:

- Estas similitudes y diferencias estructurales reflejan relaciones evolutivas
- Los canales K_V son mucho más diversos y están presentes en casi todos los organismos
- Se piensa que dos duplicaciones del gen de K_V dieron lugar a los Ca_V, y este luego dio lugar a los de Na_V

Relaciones evolutivas:

- Estas similitudes y diferencias estructurales reflejan relaciones evolutivas
- Los canales K_V son mucho más diversos y están presentes en casi todos los organismos
- Se piensa que dos duplicaciones del gen de K_V dieron lugar a los Ca_V, y este luego dio lugar a los de Na_V

Camino evolutivo de los canales dependientes de voltaje. Ver duplicación de segmentos transmembrana (TM) de los K_V a Ca_V y Na_V .

Representación filogénica:

- K_V están presentes en casi todos los eucariotas
- Ca_V están muy representados. Ya estaban presentes en los ancestros comunes de plantas y animales. Están ausentes en muchas líneas de protistas (que usan canales de ligando para controlar el Ca^{2+}). Se perdieron varias veces en la evolución.
- Na_V son de dos grandes líneas, Na_V1 y Na_V2. El Na_V2 es más antiguo, con poca especificidad (deja pasar mucho Ca²⁺), presente en todos los filos animales excepto vertebrados (que los perdieron). Los Na_V1 son específicos de los bilateria, más recientes.
- Se piensa que hubo presión evolutiva para separar la excitabilidad de la señalización intracelular del Ca^{2+} , lo que dió origen a Na_V
- Es probable que en las primeras redes neuronales la señalización se basara en *Ca*²⁺

Temas de la clase

- Corrientes de K⁺
- Corrientes de *Ca*⁺
- Estructura y evolución de canales iónicos
- Extras

Optogenética

- Existen en diferentes microorganismos canales iónicos que son directamente activados por la luz
- En la optogenética se inyecta un vector viral conteniendo estos canales, que será expresado sólo en células específicas (esto se hace con las herramientas clásicas de ingeniería genética)

Optogenética

- Así puede expresarse en poblaciones particulares de neuronas (ej. GABAérgias, dopaminérgicas, etc)
- Con una sonda de luz pueden iluminarse partes específicas del cerebro. Hay control temporalmente preciso de poblaciones específicas de neuronas

Optogenética

- Así puede expresarse en poblaciones particulares de neuronas (ej. GABAérgias, dopaminérgicas, etc)
- Con una sonda de luz pueden iluminarse partes específicas del cerebro. Hay control temporalmente preciso de poblaciones específicas de neuronas

Movimiento: Un modelo de función de ganglios basales dice que su vía neuronal dMSN está involucrada en inicializar acciones, y iMSN en inhibirlas. Se activan las dos con optogenética.

। 28 / 33

Memoria: Modelo dice que memoria es reactivación de celulas activas en el momento del evento (masomenos). Se pone vector de canalrhodopsina que se expresará ante presencia de fármaco, y actividad neuronal. Se da fármaco al ratón en el momento de formación de una memoria, y se expresan los canales en las neuronas del hipocampo activas en esa experiencia. Reactivando esas neuronas con luz se genera la respuesta correspondiente a la memoria

28 / 33

Subdeterminación de relación entre corrientes y comportamiento neuronal:

- Un hecho importante es que un determinado comportamiento neuronal puede ser generado por diferentes mecanismos
- Ejemplo de ritmo pilórico en langostas (trabajo de Eve Marder)
- Simulan el circuito variando las diferentes corrientes de las células y los parámetros de las sinápsis entre ellas

here). The model neurons feature a Na⁺ current, I_{Na} ; a fast and a slow transient Ca²⁺ current, I_{cac} ; a transient K⁺ current, I_{A} ; a Ca²⁺-dependent K⁺ current, $I_{K(Ca)}$; a delayed rectifier K⁺ current, I_{Kd} ; a hyperpolarization-activated inward current, I_{H} ; and a leak current, I_{kd} ; The voltage dependence

Relación corrientes-comportamiento

Subdeterminación de relación entre corrientes y comportamiento neuronal:

- En el ejemplo se muestran dos configuraciones con diferentes parámetros (mostrados en las barras de abajo)
- Las dos configuraciones muy distintas reproducen el comportamiento del sistema

Prinz, Bucher, Marder. Nature Neuroscience 2004

Relación corrientes-comportamiento

Subdeterminación de relación entre corrientes y comportamiento neuronal:

- ¿Qué tan importante es la regulación precisa de cada aspecto de la red, en lugar de buscar una de tantas combinaciones que de el comportamiento?
- ¿Cuánto nos dice sobre cambios en el sistema ver cambios en un parámetro (ej. corriente) en un experimento?

Prinz, Bucher, Marder. Nature Neuroscience 2004

Relación corrientes-comportamiento

Estudio del comportamiento celular:

- La matemática de sistemas dinámicos se puede usar para entender mejor los comportamientos neuronales, sacándonos de arriba los detalles
- En este enfoque abstraemos los detalles de los mecanismos y vemos qué dinámicas son posibles en general

Bibliografíá

Se recomienda estudiar de las diapositivas y usar la bibliografía para clarificar o profundizar aspectos puntuales.

- Bertil Hille. Ion Channels of Excitable Membranes (3ra ed, 2001). Capítulos 2-5, 10.
- Johnston & Wu. Foundations of Cellular Neurophysiology (1ra ed, 1994)
- Kandel. Principles of Neural Science. (5ta ed, 2013). Capítulos 5,7.
- Purves. Neuroscience. (5ta ed, 2012). Capítulo 4.
- Moran et. al. (2015) Evolution of voltage-gated ion channels at the emergence of Metazoa. *The Journal of Experimental Biology*
- Simms, B. & Zamponi, G. (2014) Neuronal Voltage-Gated Calcium Channels: Structure, Function and Dysfunction.
- Yu et. al. (2005). Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily.