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Introduction: Supervised Dimensionality Reduction

Supervised dimensionality reduction involves labeled data {xt, yt}N
t=1,

where xt ∈ Rn is observation t and yt ∈ {1, . . . , C} is the class label.

The goal is to map the variable x to a lower-dimensional variable z ∈ Rm that

maximizes information about y.

We introduce a novel supervised dimensionality reduction method called

Supervised Quadratic Feature Analysis (SQFA):

SQFA learns a set of filters f ∈ Rn×m to obtain the linear projection z = fᵀx
that maximizes second-order differences between classes

Quadratic decoders (e.g. probabilistic Gaussian decoders, Quadratic

Discriminant Analysis) are sensitive to second-order differences

Information Geometry objective

GEOMETRY: Class-conditional second-moment matrices Ψi = E
[
zzT |y = i

]
in

feature space are in Symmetric Positive Definite (SPD) manifold Sm
++.

The class-conditional second-moment matrices {Ψi}C
i=1 define C points in Sm

++.

SQFA uses Riemannian distances in Sm
++ to characterize class differences:

OBJECTIVE FUNCTION: SQFAmaximizes the sum of all pairwise Riemannian dis-

tances between the class-conditional feature second-moment matrices:

max
f

C∑
i=2

∑
j 6=i

dAI(Ψi, Ψj) (1)

using the Affine-Invariant Riemannian distance

dAI(Ψi, Ψj) =
∥∥∥log
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i
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F

=

√√√√ m∑
k=1

log2 λk (2)

where λk is the k-th generalized eigenvalue of (Ψi, Ψj), and vk its eigenvector.

CHOICE OFMETRIC: dAI(Ψi, Ψj) reflects discriminability between classes i, j:

log2 λk relates to quadratic discriminability of classes i, j along vk.

Discriminability along all generalized eigenvectors in feature space is

summarized by dAI(Ψi, Ψj) =
√∑m

k=1 log2 λk

dAI reflects Fisher information (12dAI is Fisher distance for 0-mean Gaussians):

Let curve Σ : [0, 1] → Sm
++ be the Affine-Invariant geodesic from Ψi to Ψj , with Σ(0) = Ψi and

Σ(1) = Ψj.

Fisher information of N (0, Σ(θ)) along the curve is I(θ) = 1
2Tr (Σ(θ)−1Σ′(θ)Σ(θ)−1Σ′(θ)),

where Σ′(θ) is the velocity of the curve at Σ(θ).
I(θ) measures how discriminable are local changes along the curve defined by N (0, Σ(θ))
dAI(Ψi, Ψj) = 2

∫ 1
0
√

I(θ)dθ. In words, dAI(Ψi, Ψj) is the accumulated discriminability of

transforming N (0, Ψi) into N (0, Ψj).

SQFA Python package

See the code for reproducing these results in our SQFA package tutorials:

https://sqfa.readthedocs.io/en/latest/ or scan the QR:

Toy example: SQFA vs LDA and PCA

We compare SQFA to LDA and PCA using a toy 6D dataset with 3 classes. The

dataset has 3 distinct subspaces, each favored by one method:

Dimensions 1-2 have highly discriminative covariances, but have low variance

and no differences in class means.

Dimensions 3-4 have small differences in class means, but low discriminability.

Dimensions 5-6 have high variance and no discriminability.

Figure 1. The 3 subspaces given by dimension pairs (1,2), (3,4) and (5,6) are shown. Colored

ellipses show the mean and covariance of each class. We learn 2 filters in the same 6D data

space with each of SQFA (red), LDA (green) and PCA (blue). The filters learned by each method

are shown as arrows overlayed on the data space. Each method learns filters in a different

subspace. SQFA captures the most discriminative subspace, with second-order class differences.

SQFA for digit classification

Street View House Numbers is a challenging classification dataset.

We learn 9 filters with each SQFA, LDA and PCA. SQFA filters look more digit-like.

A quadratic classifier (QDA) has higher

classification accuracywhen using fea-

tures learned with SQFA than when

using features learned with LDA, PCA,

ICA or Factor Analysis.

Features QDA Accuracy (%)

SQFA 67.5

LDA 37.4

PCA 38.6

ICA 38.6

Factor Analysis 33.4

Choice of metric is important

Other Riemannian distances (defined by different metrics) can be used in Sm
++, but

not all of them reflect discriminability.

We compare the filters learned by maximizing the Affine-Invariant distance and

the Bures-Wasserstein (optimal transport) distance in a toy 4D example.

Figure 2. Dimensions (1,2) have less vari-

ance than (3,4), but are more discriminative

because classes are more rotated. Filters

learned with the Affine Invariant distance fa-

vor the most discriminative subspace. Fil-

ters learned with the Wasserstein distance

are not invariant to scale (this can be intu-

ited form the earth movers analogy of opti-

mal transport), and they favor the subspace

with the most variance. The Wasserstein

distance does not capture the most discrim-

inative subspace.

Conclusion

SQFA is a method for dimensionality reduction that leverages the information

geometry of SPD matrices

SQFA learns features that are different from those learned by other common

methods. The features are sensitive to second-order class differences

SQFA can help tackle problems with high-dimensional covariance matrices

Information geometry can be a powerful tool for machine learning
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