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Presentation Outline

@ Introduction: Task-specific natural image statistics (NIS)

e Conditioning image statistics on task variables
e Useful for solving visual tasks
e Draw a curve in SPD manifold

o Part 1: Describing NIS curve geometry

e Choosing the right metric
o Fit locally with geodesics

o Part 2: Learning using NIS geometry

e Using distances in manifold as loss
e Choosing the right metric

Part 3: Geometry across tasks
e Shape of curve across tasks, filters, and metrics



Task-specific natural image statistics

@ Visual task: Estimating latent variable (X) from image

@ Many natural scene patches for each X value
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e Visual task: Estimating latent variable (X) from image

@ Many natural scene patches for each X value
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Task-specific natural image statistics

@ Natural image variability for fixed X values
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Task-specific natural image statistics

@ Natural image variability for fixed X values

@ Image feature statistics depend on X value
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Task-specific natural image statistics

@ Natural image variability for fixed X values

@ Image feature statistics depend on X value
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Task-specific natural image statistics

@ Natural image variability for fixed X values

@ Image feature statistics depend on X value
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Task-specific natural image statistics

@ Task-specific NIS for estimating X
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Task-specific natural image statistics

@ Task-specific NIS for estimating X

o Ideal observer models use probabilistic decoding
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Task-specific natural image statistics

@ Task-specific NIS for estimating X
o ldeal observer models use probabilistic decoding

@ Accuracy Maximization Analysis: Learn optimal linear filters for task
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Task-specific natural image statistics

Accuracy Maximization Analysis has 3 steps:

© Preprocess stimuli (fixed):
Convert image to contrast: s = 5

Add noise () and normalize: ¢ = H:tzll' v ~N(0,152)

=T

@ Linear encoding (learnable):
R=FfTc+A
c cRK, FeRF" R R" and A ~ N(0,102)

© Probabilistic decoding (determined by NIS):

A~

X = arg max p(Xi|R)



Task-specific natural image statistics

o Dataset composed of pairs (s;;, Xi)

e Finite number of X values: {Xi,..., X}

o Filters are learned with loss L(Rj;) = — log p(Xi|R})

o We assume p(R|X;) ~ N (pi, X;) (empirically verified)

piocd s
© 1~

® g
@ Visual field
: 12
B>

Visual field



Task-specific natural image statistics

@ Learning results:
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Task-specific natural image statistics

@ Side note: Gaussian distribution implies quadratic combination of

responses for decoding

@ Biologically plausible
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Task-specific natural image statistics

@ Multiple tasks well approximated by zero-mean Gaussians
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Geometric description of statistics

@ X(X): high-dimensional curve parametrized by X
@ Constrained by NIS
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Geometric description of statistics

@ X(X): high-dimensional curve parametrized by X
@ Constrained by NIS
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Geometric description of statistics

@ X(X) is a curve in SPDM manifold Sym™ (n)

@ What can we learn from this geometric perspective?

Sym™ (n)



Geometric description of statistics

@ First we need to specify a metric. Which one best fits the curve?

Metric d(A,B)
Euclidean I|A— B||F
Affine-invariant ||Iog(A_%BA_%)||F

1
Bures-Wasserstein (tr [A] + tr [B] — 2tr [ /A%BA%D 2
Log-Euclidean |llog(A ) log(B)||r

Log-Cholesky VILK] = [L]]3 + log D(K) — log D(L)[3




Geometric description of statistics

@ Which geodesics best approximate the curve?

e For each X(X;) compute mid-point between 3(X;_1) and 3(X11),
compare to ground-truth

Sym™ (n)

—e— Metric 1

—e— Metric 2



Metrics: Euclidean

Euclidean metric:

Distance d(A,B)=||A—B|F
Interpolation | W(A,B,t) =(1—-t)A+tB

@ Invariant to orthogonal transformations

@ Swelling in interpolation: /,"" ( ( ( ( ’



Metrics: Affine-Invariant

Affine-invariant metric:
d(A, B) = |llog (A"2BA ) | = X21_ (log \,)?

W(A, B, t) = A exp{tlog (A—%BA—%) 1A2

Distance

Interpolation

Ai generalized eigenvalues of (A, B): Av; = \;By;

@ Invariant to affine transformations
@ Equals Fisher information metric for zero-mean Gaussians

o Flattening in interpolation: ——— = e € ¢ | f {‘ r



Metrics: Bures-Wasserstein

Bures-Wasserstein metric:

Distance | d(A.8) = (tr[] + (8] —2u |(alBal) | )’

W(A,B,t)=[1—-t)l +tT]A[(1 —t)] +tT]
Interpolation

_1
with T = B3 [B%AB%} > B3

Invariant to orthogonal transformations

Equals optimal transport distance between zero-mean Gaussians

@ Geodesics are optimal transport plans

Some swelling and flattening in interpolation: \Q.'



Metrics: Intuition

@ Intuition of distributions distances

Fisher-Rao Optimal transport
(Affine-invariant) (Bures-Wasserstein)
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Geometric description of statistics

@ Which geodesics best approximate the curve?

e For each X(X;) compute mid-point between 3(X;_1) and 3(X11),
compare to ground-truth

Sym™ (n)

—e— Metric 1

—e— Metric 2



Geometric description of statistics

@ Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolation errors:

Interpolation metric: —— Affine  —— Wasserstein = Euclidean

A(ETrue, Xaeo) Af fine A(ETrues EGeo) Wasserstein AETrue, XGeo) Buctidean




Geometric description of statistics

@ Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolations examples:
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Geometric description of statistics

@ Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolations examples:

True
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Geometric description of statistics

@ Why Bures-Wasserstein geodesics fit best?



Geometric description of statistics

@ Why Bures-Wasserstein geodesics fit best?
@ Intuition: Optimal transport gets closest to ellipses rotation

True Wasserstein Optimal transport plan

X




Geometric description of statistics

o Is this geometrical property (BW-like) a product of optimal filters?
@ Do PCA filter statistics look different?

Trained filters PCA filters




Geometric description of statistics

@ BW best approximates PCA filter statistics curve

PCA interpolation errors:

Interpolation metric: == Affine == Wasserstein === Euclidean

d(ETrum EGEO)Affin,e d(ETrues EGEG)Wasserst,ein d(ETv"uev EGe«))Eucl?‘dﬁan




Geometric description of statistics

Conclusions

@ Metric is important for covariance interpolation

@ Geometry of NIS curve is best approximated by Bures-Wasserstein
geodesics

@ This geometry is maintained across filters, tasks (not shown) and
levels of latent variable



Geometry as a training goal

@ What insights can geometry provide?
@ How does NIS geometry relate to visual tasks?



Geometry as a training goal

@ What insights can geometry provide?
@ How does NIS geometry relate to visual tasks?

@ Intuition: More distant classes are more discriminable

Sym™ (n)

-e- High-performance filters

-»- Low-performance filters



Geometry as a training goal

Test this intuition:

@ Use the pairwise distances as a loss to learn filters

@ Only requires stimulus statistics:
Y (X)) = FTW(X)f

W(X;) is the covariance of X = X; stimuli



Geometry as a training goal

@ Geometric learning is metric-dependent:

o Affine-invariant loss learns good filters
o Wasserstein and Euclidean losses do not

Affine-invariant loss

Performance loss

AEEs

Wasserstein loss Euclidean loss




Geometry as a training goal

@ Geometric learning is metric-dependent:

o Affine-invariant loss learns good filters
o Wasserstein and Euclidean losses do not

Loss of learned filters
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Geometry as a training goal

@ Geometric learning is metric-dependent:

o Affine-invariant loss learns good filters
o Wasserstein and Euclidean losses do not

Loss of learned filters
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Geometry as a training goal

Why are some metrics better for training?
@ Affine-Invariant metric measures local discriminability
o Affine-Invariant distance also relates to discriminability:
Av, = M\ Bvy

n

d(2(X), £(X))) = > _(log Ae)?
k=1
E[(VRAX=X] vS(X)v

E[(v/R?IX =X]] vIE(Xj)w

@ Bures-Wasserstein is not invariant to scale



Geometry as a training goal

o KL divergence is related to Fisher-Rao metric
@ It also relates to discriminability. Is it a good loss?
o



Geometry as a training goal

o KL divergence is related to Fisher-Rao metric
o It also relates to discriminability. Is it a good loss?

@ KL divergence is not a good loss for training

Performance trained KL divergence loss




Geometry as a training goal

Conclusions:
@ Geometrical intuition can be used for training
@ Choosing the right metric is important
@ The best metric for training is not the same as for interpolation

@ What makes a good metric for training?



@ Metric choice affects interpolation and learning
o Filters affect performance

@ How do these affect curve shape?



Curve shape

e Optimal filters generally (not always) farther than PCA filters
@ Shape is similar across filters and metrics

@ Shape changes with task
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Curve shape

e Optimal filters generally (not always) farther than PCA filters
@ Shape is similar across filters and metrics

@ Shape changes with task
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Curve shape

e Optimal filters generally (not always) farther than PCA filters
@ Shape is similar across filters and metrics

@ Shape changes with task
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Curve shape

e Optimal filters generally (not always) farther than PCA filters
@ Shape is similar across filters and metrics

@ Shape changes with task
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Overview

o Task-specific NIS are a good system to explore geometric perspective
on representations and learning
e Zero-mean Gaussians have rich, well developed geometry
@ Used SPDM manifold to interpolate and train
e Chosing the right metric is important!
o Bures-Wasserstein (OT) best for interpolation
o Affine-Invariant (FR) best for training
o Geometry relates to performance and learning (given the right metric)
@ Same results across tasks



@ How generalizable are results for zero-mean Gaussian to other
distributions?

@ Why NIS covariances have this geometry?

@ What makes a good metric for training?

@ How does this relate to neural activity geometry? (e.g. is activity

geometry something we can compare to real neurons?)

@ Other geometric features as training objectives? (e.g. smoothness)



More information:

@ Accuracy Maximization Analysis in Pytorch:
https://github.com/dherreral91l/accuracy_maximization_
analysis

e P. Jaini and J. Burge (2017). " Linking normative models of

natural tasks to descriptive models of neural response”. Journal
of Vision

o J. Burge and P. Jaini (2017). " Accuracy Maximization Analysis
for Sensory-Perceptual Tasks: Computational Improvements,
Filter Robustness, and Coding Advantages for Scaled Additive
Noise". PLOS Computational Biology

e D. Herrera-Esposito; J. Burge (2023). " Optimal motion-in-depth
estimation with natural stimuli’. bioRxiv


https://github.com/dherrera1911/accuracy_maximization_analysis
https://github.com/dherrera1911/accuracy_maximization_analysis

