A geometric analysis of task-specific natural image statistics

Daniel Herrera-Esposito

Johannes Burge Lab Department of Psychology University of Pennsylvania

KORK ERKER ADAM ADA

Presentation Outline

• Introduction: Task-specific natural image statistics (NIS)

- Conditioning image statistics on task variables
- Useful for solving visual tasks
- **•** Draw a curve in SPD manifold

• Part 1: Describing NIS curve geometry

- Choosing the right metric
- Fit locally with geodesics

• Part 2: Learning using NIS geometry

- Using distances in manifold as loss
- Choosing the right metric

• Part 3: Geometry across tasks

• Shape of curve across tasks, filters, and metrics

KORKARYKERKER POLO

- Visual task: Estimating latent variable (X) from image
- Many natural scene patches for each X value

- Visual task: Estimating latent variable (X) from image
- Many natural scene patches for each X value

 \bullet

• Natural image variability for fixed X values

-3 deg/s

- Natural image variability for fixed X values
- \bullet Image feature statistics depend on X value

 QQ

- Natural image variability for fixed X values
- \bullet Image feature statistics depend on X value

 QQ

- Natural image variability for fixed X values
- \bullet Image feature statistics depend on X value

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9 Q ⊙

• Task-specific NIS for estimating X

 \bullet

• Ideal observer models use probabilistic decoding

KORK ERKER ADA DI VOLO

- Task-specific NIS for estimating X
- Ideal observer models use probabilistic decoding
- Accuracy Maximization Analysis: Learn optimal linear filters for task

KORK EXTERNE PROVIDE

Accuracy Maximization Analysis has 3 steps:

1 Preprocess stimuli (fixed): Convert image to contrast: $\boldsymbol{s} = \frac{I - \bar{I}}{I}$ \bar{l} Add noise (γ) and normalize: $\bm{c} = \frac{\bm{s} + \gamma}{\|\bm{s} + \gamma\|}$ $\frac{\textbf{s}+\gamma}{\|\textbf{s}+\gamma\|}$, $\gamma \sim \mathcal{N}(0, I\sigma_{\boldsymbol{\rho}}^2)$

2 Linear encoding (learnable):

$$
\boldsymbol{R} = \boldsymbol{f}^{\top} \boldsymbol{c} + \boldsymbol{\lambda}
$$

$$
\boldsymbol{c} \in \mathbb{R}^k, \ \boldsymbol{f} \in \mathbb{R}^{k \times n}, \ \boldsymbol{R} \in \mathbb{R}^n, \ \text{and} \ \boldsymbol{\lambda} \sim \mathcal{N}(0, \mathsf{I} \sigma^2_r)
$$

³ Probabilistic decoding (determined by NIS):

$$
\hat{X} = \arg\max_{X_i} p(X_i | \bm{R})
$$

KORKAR KERKER SAGA

- Dataset composed of pairs (s_{ii}, X_i)
- Finite number of X values: $\{X_1, \ldots, X_m\}$
- Filters are learned with loss $\mathcal{L}(\bm{R}_{ij}) = -\log p(X_i|\bm{R}_{ij})$
- We assume $p(\bm{R}|X_i) \sim \mathcal{N}(\bm{\mu}_i, \bm{\Sigma}_i)$ (empirically verified)

KORK EXTERNE PROVIDE

• Learning results:

イロト イ部 トイ君 トイ君 ト

÷,

 299

- Side note: Gaussian distribution implies quadratic combination of responses for decoding
- Biologically plausible

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Multiple tasks well approximated by zero-mean Gaussians

 4 ロ) 4 何) 4 ミ) 4 3) \equiv 2990

- \bullet $\Sigma(X)$: high-dimensional curve parametrized by X
- **•** Constrained by NIS

KORK EXTERNE PROVIDE

- \bullet $\Sigma(X)$: high-dimensional curve parametrized by X
- Constrained by NIS

- $\Sigma(X)$ is a curve in SPDM manifold $\text{Sym}^+(n)$
- What can we learn from this geometric perspective?

KORK EXTERNE PROVIDE

• First we need to specify a metric. Which one best fits the curve?

- Which geodesics best approximate the curve?
- For each $\Sigma(X_i)$ compute mid-point between $\Sigma(X_{i-1})$ and $\Sigma(X_{i+1})$, compare to ground-truth

4 0 1 4 4 5 1 4 5 1 5 1 5

 2990

Euclidean metric:

- Invariant to orthogonal transformations
-

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Affine-invariant metric:

 λ_i generalized eigenvalues of (A, B) : $A v_i = \lambda_i B v_i$

- **Invariant to affine transformations**
- **Equals Fisher information** metric for zero-mean Gaussians
- Flattening in interpolation:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Metrics: Bures-Wasserstein

Bures-Wasserstein metric:

- Invariant to orthogonal transformations
- **Equals optimal transport** distance between zero-mean Gaussians
- **•** Geodesics are optimal transport plans

• Some swelling and flattening in interpolation:

• Intuition of distributions distances

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• Intuition of distributions distances

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Which geodesics best approximate the curve?
- For each $\Sigma(X_i)$ compute mid-point between $\Sigma(X_{i-1})$ and $\Sigma(X_{i+1})$, compare to ground-truth

4 0 1 4 4 5 1 4 5 1 5 1 5

 2990

Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolation errors:

KORKARYKERKER POLO

Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolations examples:

 2990

Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolations examples:

Ğ,

 2990

• Why Bures-Wasserstein geodesics fit best?

 \bullet

- Why Bures-Wasserstein geodesics fit best?
- Intuition: Optimal transport gets closest to ellipses rotation

 $\mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{A} \otimes \mathbf{B} \rightarrow \mathbf{B} \otimes \mathbf{B}$

 2990

- Is this geometrical property (BW-like) a product of optimal filters?
- Do PCA filter statistics look different?

Trained filters

$f2$ $f3$ $f5$ f₆ f8

KORK ERKER ADAM ADA

PCA filters

BW best approximates PCA filter statistics curve

PCA interpolation errors:

KORK ERKER ADA DI VOLO

Conclusions

- Metric is important for covariance interpolation
- Geometry of NIS curve is best approximated by Bures-Wasserstein geodesics
- This geometry is maintained across filters, tasks (not shown) and levels of latent variable

KORKARYKERKER POLO

- What insights can geometry provide?
- How does NIS geometry relate to visual tasks?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet

- What insights can geometry provide?
- How does NIS geometry relate to visual tasks?
- **a** Intuition: More distant classes are more discriminable

 \mathbb{B}

 QQ

Test this intuition:

Use the pairwise distances as a loss to learn filters

$$
\mathcal{L} = -\sum_{i=1}^{m-1} \sum_{j=i}^m d(\mathbf{\Sigma}(\mathsf{X}_i), \mathbf{\Sigma}(\mathsf{X}_j))
$$

• Only requires stimulus statistics:

$$
\Sigma(X_i) = \boldsymbol{f}^{\mathsf{T}} \Psi(X_i) \boldsymbol{f}
$$

 $\Psi(X_i)$ is the covariance of $X = X_i$ stimuli

- Geometric learning is metric-dependent:
	- Affine-invariant loss learns good filters
	- Wasserstein and Euclidean losses do not

Performance loss

Affine-invariant loss

Wasserstein loss

Euclidean loss

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 \equiv ΩQ

- **•** Geometric learning is metric-dependent:
	- Affine-invariant loss learns good filters
	- Wasserstein and Euclidean losses do not

Loss of learned filters

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 299

- **•** Geometric learning is metric-dependent:
	- Affine-invariant loss learns good filters
	- Wasserstein and Euclidean losses do not

Loss of learned filters

メロトメ 御 トメ 君 トメ 君 トッ 君

 299

Why are some metrics better for training?

- Affine-Invariant metric measures local discriminability
- Affine-Invariant distance also relates to discriminability:

$$
N_{k} = N_{k} \sum_{k=1}^{n} (\log \lambda_{k})^{2}
$$

$$
d(\Sigma(X_{i}), \Sigma(X_{j})) = \sum_{k=1}^{n} (\log \lambda_{k})^{2}
$$

$$
\frac{\mathbb{E}[(v_{k}^{T} R)^{2} | X = X_{i}]}{\mathbb{E}[(v_{k}^{T} R)^{2} | X = X_{j}]} = \frac{v_{k}^{T} \Sigma(X_{i}) v_{k}}{v_{k}^{T} \Sigma(X_{j}) v_{k}} = \lambda_{k}
$$

KORKARYKERKER POLO

 $A_{Vk} = \lambda_k B_{Vk}$

• Bures-Wasserstein is not invariant to scale

- KL divergence is related to Fisher-Rao metric
- It also relates to discriminability. Is it a good loss?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \bullet

- KL divergence is related to Fisher-Rao metric
- It also relates to discriminability. Is it a good loss?
- KL divergence is not a good loss for training

Performance trained

KL divergence loss

KORKARYKERKER POLO

Conclusions:

- **•** Geometrical intuition can be used for training
- Choosing the right metric is important
- The best metric for training is not the same as for interpolation

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

• What makes a good metric for training?

• Metric choice affects interpolation and learning

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- Filters affect performance
- How do these affect curve shape?

- Optimal filters generally (not always) farther than PCA filters
- Shape is similar across filters and metrics
- Shape changes with task

 \equiv Ω

Afine-invariant distance

- Optimal filters generally (not always) farther than PCA filters
- Shape is similar across filters and metrics
- Shape changes with task

Afine-invariant distance

- Optimal filters generally (not always) farther than PCA filters
- Shape is similar across filters and metrics
- Shape changes with task

- Optimal filters generally (not always) farther than PCA filters
- Shape is similar across filters and metrics
- Shape changes with task

Afine-invariant distance

- Task-specific NIS are a good system to explore geometric perspective on representations and learning
	- Zero-mean Gaussians have rich, well developed geometry
- Used SPDM manifold to interpolate and train
	- Chosing the right metric is important!
	- Bures-Wasserstein (OT) best for interpolation
	- Affine-Invariant (FR) best for training
- Geometry relates to performance and learning (given the right metric)

KORKARYKERKER POLO

• Same results across tasks

- How generalizable are results for zero-mean Gaussian to other distributions?
- Why NIS covariances have this geometry?
- What makes a good metric for training?
- How does this relate to neural activity geometry? (e.g. is activity geometry something we can compare to real neurons?)
- Other geometric features as training objectives? (e.g. smoothness)

KORKARYKERKER POLO

Thanks!

More information:

- Accuracy Maximization Analysis in Pytorch: [https://github.com/dherrera1911/accuracy_maximization_](https://github.com/dherrera1911/accuracy_maximization_analysis) [analysis](https://github.com/dherrera1911/accuracy_maximization_analysis)
- P. Jaini and J. Burge (2017). "Linking normative models of natural tasks to descriptive models of neural response". Journal of Vision
- J. Burge and P. Jaini (2017). "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise". PLOS Computational Biology
- D. Herrera-Esposito; J. Burge (2023). "Optimal motion-in-depth estimation with natural stimuli". $bioRxiv$