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Presentation Outline

Introduction: Task-specific natural image statistics (NIS)
Conditioning image statistics on task variables
Useful for solving visual tasks
Draw a curve in SPD manifold

Part 1: Describing NIS curve geometry
Choosing the right metric
Fit locally with geodesics

Part 2: Learning using NIS geometry
Using distances in manifold as loss
Choosing the right metric

Part 3: Geometry across tasks
Shape of curve across tasks, filters, and metrics
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Visual task: Estimating latent variable (X ) from image

Many natural scene patches for each X value
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Task-specific natural image statistics

Task-specific NIS for estimating X

Ideal observer models use probabilistic decoding

Accuracy Maximization Analysis: Learn optimal linear filters for task



Task-specific natural image statistics

Accuracy Maximization Analysis has 3 steps:

1 Preprocess stimuli (fixed):

Convert image to contrast: s = I−Ī
Ī

Add noise (γ) and normalize: c = s+γ
‖s+γ‖ , γ ∼ N (0, Iσ2

p)

2 Linear encoding (learnable):

R = f Tc + λ

c ∈ Rk , f ∈ Rk×n, R ∈ Rn, and λ ∼ N (0, Iσ2
r )

3 Probabilistic decoding (determined by NIS):

X̂ = arg max
Xi

p(Xi |R)



Task-specific natural image statistics

Dataset composed of pairs (sij ,Xi )

Finite number of X values: {X1, . . . ,Xm}
Filters are learned with loss L(Rij) = − log p(Xi |Rij)

We assume p(R|Xi ) ∼ N (µi ,Σi ) (empirically verified)



Task-specific natural image statistics

Learning results:



Task-specific natural image statistics

Side note: Gaussian distribution implies quadratic combination of
responses for decoding

Biologically plausible



Task-specific natural image statistics

Multiple tasks well approximated by zero-mean Gaussians



Geometric description of statistics

Σ(X ): high-dimensional curve parametrized by X

Constrained by NIS
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Geometric description of statistics

Σ(X ) is a curve in SPDM manifold Sym+(n)

What can we learn from this geometric perspective?



Geometric description of statistics

First we need to specify a metric. Which one best fits the curve?

Metric d(A,B)

Euclidean ‖A− B‖F
Affine-invariant ‖log(A−

1
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1
2 )‖F

Bures-Wasserstein
(
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[√
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1
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1
2

]) 1
2

Log-Euclidean ‖log(A)− log(B)‖F
Log-Cholesky

√
‖bKc − bLc‖2

F + ‖logD(K )− logD(L)‖2
F



Geometric description of statistics

Which geodesics best approximate the curve?

For each Σ(Xi ) compute mid-point between Σ(Xi−1) and Σ(Xi+1),
compare to ground-truth



Metrics: Euclidean

Euclidean metric:

Distance d(A,B) = ‖A− B‖F
Interpolation W (A,B, t) = (1− t)A + tB

Invariant to orthogonal transformations

Swelling in interpolation:



Metrics: Affine-Invariant

Affine-invariant metric:

Distance d(A,B)2 = ‖log
(
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1
2 BA−

1
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)
‖F =
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2

Interpolation W (A,B, t) = A
1
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(
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)
}A

1
2

λi generalized eigenvalues of (A,B): Avi = λiBvi

Invariant to affine transformations

Equals Fisher information metric for zero-mean Gaussians

Flattening in interpolation:



Metrics: Bures-Wasserstein

Bures-Wasserstein metric:

Distance d(A,B) =

(
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[(
A

1
2 BA

1
2

) 1
2

]) 1
2

Interpolation
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Invariant to orthogonal transformations

Equals optimal transport distance between zero-mean Gaussians

Geodesics are optimal transport plans

Some swelling and flattening in interpolation:



Metrics: Intuition

Intuition of distributions distances
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Intuition of distributions distances



Geometric description of statistics

Which geodesics best approximate the curve?

For each Σ(Xi ) compute mid-point between Σ(Xi−1) and Σ(Xi+1),
compare to ground-truth



Geometric description of statistics

Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolation errors:
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Bures-Wasserstein (OT) geodesics best approximate the curve

Interpolations examples:



Geometric description of statistics

Why Bures-Wasserstein geodesics fit best?



Geometric description of statistics

Why Bures-Wasserstein geodesics fit best?

Intuition: Optimal transport gets closest to ellipses rotation



Geometric description of statistics

Is this geometrical property (BW-like) a product of optimal filters?

Do PCA filter statistics look different?



Geometric description of statistics

BW best approximates PCA filter statistics curve

PCA interpolation errors:



Geometric description of statistics

Conclusions

Metric is important for covariance interpolation

Geometry of NIS curve is best approximated by Bures-Wasserstein
geodesics

This geometry is maintained across filters, tasks (not shown) and
levels of latent variable



Geometry as a training goal

What insights can geometry provide?

How does NIS geometry relate to visual tasks?



Geometry as a training goal

What insights can geometry provide?

How does NIS geometry relate to visual tasks?

Intuition: More distant classes are more discriminable



Geometry as a training goal

Test this intuition:

Use the pairwise distances as a loss to learn filters

L = −
m−1∑
i=1

m∑
j=i

d(Σ(Xi ),Σ(Xj))

Only requires stimulus statistics:

Σ(Xi ) = f TΨ(Xi )f

Ψ(Xi ) is the covariance of X = Xi stimuli



Geometry as a training goal

Geometric learning is metric-dependent:

Affine-invariant loss learns good filters
Wasserstein and Euclidean losses do not
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Geometry as a training goal

Why are some metrics better for training?

Affine-Invariant metric measures local discriminability

Affine-Invariant distance also relates to discriminability:

Avk = λkBvk

d(Σ(Xi ),Σ(Xj)) =
n∑

k=1

(log λk)2

E
[
(vTk R)2|X = Xi

]
E
[
(vTk R)2|X = Xj

] =
vTk Σ(Xi )vk

vTk Σ(Xj)vk
= λk

Bures-Wasserstein is not invariant to scale



Geometry as a training goal

KL divergence is related to Fisher-Rao metric

It also relates to discriminability. Is it a good loss?



Geometry as a training goal

KL divergence is related to Fisher-Rao metric

It also relates to discriminability. Is it a good loss?

KL divergence is not a good loss for training



Geometry as a training goal

Conclusions:

Geometrical intuition can be used for training

Choosing the right metric is important

The best metric for training is not the same as for interpolation

What makes a good metric for training?



Curve shape

Metric choice affects interpolation and learning

Filters affect performance

How do these affect curve shape?



Curve shape

Optimal filters generally (not always) farther than PCA filters

Shape is similar across filters and metrics

Shape changes with task
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Overview

Task-specific NIS are a good system to explore geometric perspective
on representations and learning

Zero-mean Gaussians have rich, well developed geometry

Used SPDM manifold to interpolate and train

Chosing the right metric is important!
Bures-Wasserstein (OT) best for interpolation
Affine-Invariant (FR) best for training

Geometry relates to performance and learning (given the right metric)

Same results across tasks



Questions

How generalizable are results for zero-mean Gaussian to other
distributions?

Why NIS covariances have this geometry?

What makes a good metric for training?

How does this relate to neural activity geometry? (e.g. is activity
geometry something we can compare to real neurons?)

Other geometric features as training objectives? (e.g. smoothness)



Thanks!

More information:

Accuracy Maximization Analysis in Pytorch:
https://github.com/dherrera1911/accuracy_maximization_

analysis
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