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Figure 3. HOS outperform spectral statistics for classification, unlike segmentation. A) Classification
error for each dataset and each statistics set. Dashed lines indicate chance performance. B) LOR between
HOS classifiers and spectral statistics classifiers. Dashed lines show the LOR for the segmentation task.
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Middle: Portilla-Simoncelli synthesis (HOS+Spectral), , classes in each dataset. \We subsampled the number of classes of

each dataset, to test the effect of the number of classes on the
advantage of HOS over spectral statistics. Even when using only 2
classes, the HOS are more useful for classification (LOR>0) than for
segmentation (LOR~0). Also, the differences between classification

Right: Phase scrambling. B) Texture segmentation®. Left:
HOS difference, Right: HOS+Spectral difference
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In previous modeling work®, we showed that HOS and

spectral statistics are redundant for a natural image i el tasks persist when matched in the number of classes. Color code and
segmentation task, which may explain the minor role of > I\1loclas1s,5es 20 20 dashed lines as in Figure 3B.
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segments using these differences in statistics.

r N\ Figure 7. Subsets of HOS contribute
Log-odds ratio (LOR): We used the LOR between Task Instance ~®- Material -@- Perceptual Scene -@- Segmentation similarly to classification subtasks
classifiers as a measure of the advantage of HOS over - HOS subsets alone N Spectral + HOS subsets ~ Full model - HOS subsets and to Segmentation. We analyzed
spectral statistics. < ;8 = = the relevance of the different subsets of
- - ® / 2 g - , o {
LOR~0 = the two classifiers perform similarly 5801 ¢ ‘&1 = A 5, ] V. HOS. We added (or removed) the
LOR>0 = HOS > spectral statistics 2 . \' g - /,0 g ,;' \ Vs subsets individually to a baseline
: - N\/Z : y o A8 5100 o NA/B model, and compared the change in
Material S0l NN/ §91 §K78 7o £ ‘,"'If X _;",f _ performance to the change of adding
o B ;/,ﬁ__. Q. 5 @ .
= 3 3 L« "t 3 °1 ¢ $ (or removing) the full set of HOS. We
X ,I, 5 T T T T T
U S _\60,\,&-\\00 o o o T e o show what perce ntgg e of total HOS
o F ° O = ) O° performance is achieved by each HOS
S “ subset.

e HOS strongly outperform spectral statistics for classification but not for segmentation, which
may explain their task-dependent use by humans

e The difference between HOS and spectral statistics varies between classification sub-tasks

e The advantage of HOS over spectral statistics for classification is due to a larger number of
informative dimensions, and not due to differences in variability or invariance

e The contribution of different HOS subsets is consistent across datasets and tasks

Figure 2. Types of classification tasks. Pairs of | . S _ -
samples from a random class of each kind of dataset. e These results outline the importance of task-specific analyses of natural image statistics
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