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Introduction: Neural variability

@ Neural activity is variable
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Introduction: Neural variability

@ Neural activity is variable
@ Variability is flexible
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Introduction: Divisive normalization

@ Neural activity is often sub-linear
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Introduction: Divisive normalization

@ Neural activity is often sub-linear

@ A model of this is Divisive Normalization
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Divisive normalization and neural variability interact

@ Normalization-variability interaction is important to understand neural

coding

nature reviews neuroscience https://doi.org/101038/541583-024-00795-0
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Our model:
@ Classical normalization model

@ Allow variability
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Our model

What we did:
@ We derive formulas for the normalized response statistics
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Results

@ Our model produces known phenomena and new insights:
o Normalization-induced correlations
e Stimulus dependent correlations
o Correlation structure follows normalization weights
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Results

@ Our model produces known phenomena and new insights:

e Normalization-induced correlations
e Stimulus dependent correlations
o Correlation structure follows normalization weights
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Results

@ Our model produces known phenomena and new insights:
o Normalization-induced correlations
e Stimulus dependent correlations
o Correlation structure follows normalization weights
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Next steps

@ Test our model with classic neural variability-experiments

@ Use our analytic formulas to fit neural data



Some amazing tools that helped me

@ How does a biologist get all this math done?

@ Online math forums



Some amazing tools that helped me

Math forums:
Q

CrossValidated B

4 Home . .
Formulas, approximations, or bounds for [E , X ~N(p,X)?
B questons l X X1
@ Taos Asked 1yearago Modified 11 monthsago Viewed 409 times
R saves A Inanother guestion, | asked for E ( m) inthe case where X € RY ~ N(u, I). Somebody e
&8 Users posted an exact formula based on —
10 4 4 Each component of E[x/uxu] is of the form (U, V') = U/+/U? + V, where U is that component
B unanswered I am now interested in obtaining st of X and V = (3 X?) — U2. So you can approximate f by ts second-order Taylor series around

¥ where X ~ N(, %) and Sis ar (E[U], E[V]), and lake the expectation of that Taylor series. This estimates that component of
E[X/||X]) as E[U]//E[UT? + E[V] times a polynomial in E[U], E[V], Var[U], Var[V]. That
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and X. — user225256 Nov 7, 2023 at 20:42 /'

Expected value of Rayleigh quotient, non-centered Gaussian vector

Asked 1year, 8 months ago  Modified 1 year, 8 months ago  Viewed 366 times

Formulas or approximations for E ( Tx] )

Asked 1yearago Modified 6 months ago Viewed 391 times
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Some amazing tools that helped me

Math forums:
e Using math/programming/statistics forums takes work
@ They can help you at any level of knowledge

@ Experts around the world happy to help



Conclusion

@ Neural variability and divisive normalization interact
@ We have a model that captures this interaction and provides us with
insight

@ The model can be fit to data and used to make predictions
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